Cell-penetrating peptides (CPPs) have been widely used to deliver nanomaterials and other types of macromolecules into mammalian cells for therapeutic and diagnostic use. Cationic CPPs that bind to heparan sulfate (HS) proteoglycans on the cell surface induce potent endocytosis; however, the role of other surface receptors in this process is unclea...
AbstractMetastasis is the main killer in cancer; consequently, there is great interest in novel approaches to prevent and treat metastatic disease. Brain metastases are particularly deadly, as the protection of the blood-brain barrier obstructs the passage of common anticancer drugs. This study used magnetic resonance imaging (MRI) to investigate t...
The luminescence lifetime of nanocrystalline silicon is typically on the order of microseconds, significantly longer than the nanosecond lifetimes exhibited by fluorescent molecules naturally present in cells and tissues. Time-gated imaging, where the image is acquired at a time after termination of an excitation pulse, allows discrimination of a s...
Tumor-specific tissue-penetrating peptides deliver drugs into extravascular tumor tissue by increasing tumor vascular permeability through interaction with neuropilin (NRP). Here, we report that a prototypic tumor-penetrating peptide iRGD (amino acid sequence: CRGDKGPDC) potently inhibits spontaneous metastasis in mice. The antimetastatic effect wa...
Application of anticoagulants remains the primary strategy for prevention and treatment of thrombosis. However, high rate of bleeding complications limits their use. The peptide anticoagulant bivalirudin has been reported to exhibit a lower rate of bleeding complications than heparin, and it also has the advantage of not causing thrombocytopenia, w...
Braun, Gary BFriman, TomasPang, Hong-BoPallaoro, AlessiaHurtado de Mendoza, TatianaWillmore, Anne-Mari AKotamraju, Venkata RamanaMann, Aman PShe, Zhi-GangSugahara, Kazuki N
...
There is considerable interest in using nanoparticles as labels or to deliver drugs and other bioactive compounds to cells in vitro and in vivo. Fluorescent imaging, commonly used to study internalization and subcellular localization of nanoparticles, does not allow unequivocal distinction between cell surface-bound and internalized particles, as t...
The ability to detect and quantify macrophage accumulation can provide important diagnostic and prognostic information for atherosclerotic plaque. We have previously shown that LyP-1, a cyclic 9-amino acid peptide, binds to p32 proteins on activated macrophages, facilitating the visualization of atherosclerotic plaque with PET. Yet, the in vivo pla...
A major limitation in the pharmacological treatment of pulmonary arterial hypertension (PAH) is the lack of pulmonary vascular selectivity. Recent studies have identified a tissue-penetrating homing peptide, CARSKNKDC (CAR), which specifically homes to hypertensive pulmonary arteries but not to normal pulmonary vessels or other tissues. Some tissue...
The centrality of phosphoinositide-3-kinase (PI3K) in cancer etiology is well established, but clinical translation of PI3K inhibitors has been limited by feedback signaling, suboptimal intratumoral concentration, and an insulin resistance "class effect." This study was designed to explore the use of supramolecular nanochemistry for targeting PI3K ...
Antiangiogenic therapy is a promising new treatment modality for cancer, but it generally produces only transient tumor regression. We have previously devised a tumor-targeted nanosystem, in which a pentapeptide, CGKRK, delivers a proapoptotic peptide into the mitochondria of tumor blood vessel endothelial cells and tumor cells. The treatment was h...